

 [image: _images/qcor_full_logo.svg]

QCOR is a single-source C++, retargetable quantum-classical compiler enabling
low and high level quantum programming, compilation, and execution. QCOR represents the integration
of the XACC quantum framework with the ubiquitous Clang/LLVM classical compiler frameworks. The QCOR
compiler extends both of these infrastructures via simple plugin extensions, and enables programmers
to express quantum kernel expressions (functors containing quantum code) alongside standard
C++.

Description of Architecture

For class documentation, check out this site [https://ornl-qci.github.io/xacc-api-docs/].

QCOR Development Team

QCOR is developed and maintained by:

	Alex McCaskey

	Travis Humble

	Eugene Dumitrescu

	Dmitry Liakh

	Thien Nguyen

	Daniel Chaves-Claudino

	Tyler Kharazi

	Anthony Santana

Questions, Bug Reporting, and Issue Tracking

Questions, bug reporting and issue tracking are provided by GitHub. Please
report all bugs by creating a new issue [https://github.com/qir-alliance/qcor/issues/new].
You can ask questions by creating a new issue with the question tag.

Contents:

	Installation
	Quick-Start with Docker

	Dependencies

	Building from Scratch

	Basics

Indices and tables

	Index

	Module Index

	Search Page

Installation

Quick-Start with Docker

To get up and running quickly and avoid installing the prerequisites you can
pull the qcor/qcor Docker image.
This image provides an Ubuntu 18.04 container that serves up an Eclipse Theia IDE. QCOR is already
built and ready to go.

Dependencies

Note that you must have a C++17 compliant compiler and a recent version of CMake (version 3.12+).
You must have XACC installed (see Bulding XACC [https://xacc.readthedocs.io/en/latest/install.html#building-xacc])

Easiest way to install CMake - do not use the package manager,
instead use pip, and ensure that /usr/local/bin is in your PATH:

$ python3 -m pip install --upgrade cmake
$ export PATH=$PATH:/usr/local/bin

For now we require our users build a specific fork of LLVM/Clang that
provides Syntax Handler plugin support. We expect this fork to be upstreamed
in a future release of LLVM and Clang, and at that point users will only
need to download the appropriate LLVM/Clang binaries (via apt-get for instance).

To build this fork of LLVM/Clang (be aware this step takes up a good amount of RAM):

$ apt-get install ninja-build [if you dont have ninja]
$ git clone https://github.com/hfinkel/llvm-project-csp llvm
$ cd llvm && mkdir build && cd build
$ cmake -G Ninja ../llvm -DCMAKE_INSTALL_PREFIX=$HOME/.llvm -DBUILD_SHARED_LIBS=TRUE -DCMAKE_BUILD_TYPE=Release -DLLVM_TARGETS_TO_BUILD="X86" -DLLVM_ENABLE_DUMP=ON -DLLVM_ENABLE_PROJECTS=clang
$ cmake --build . --target install
$ sudo ln -s $HOME/.llvm/bin/llvm-config /usr/bin

Building from Scratch

Note that, for now, developers must clone QCOR manually:

$ git clone https://github.com/qir-alliance/qcor
$ cd qcor && mkdir build && cd build
$ cmake ..
$ [with tests] cmake .. -DQCOR_BUILD_TESTS=TRUE
$ make -j$(nproc) install

Update your PATH to ensure that the `qcor` compiler is available.

$ export PATH=$PATH:$HOME/.xacc/bin (or wherever you installed XACC)

Basics

Index

 nav.xhtml

 Table of Contents

 		
 Installation

 		
 Quick-Start with Docker

 		
 Dependencies

 		
 Building from Scratch

 		
 Basics

_static/file.png

_static/minus.png

_static/plus.png

